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Abstract
We study quantum electrodynamics coupled to the matter field on a singular
background, which we call defect. For defect on an infinite plane we calculated
the mean electromagnetic field. Quantum corrections determining the field
near the plane are calculated in the leading order of perturbation theory. We
analyse the normalization conditions for the parameters of the defect and
calculate the photoelectric function of the charged particle from the defect.

PACS number: 12.20.Ds

1. Introduction

Theory of Casimir effect based on the assumption that it is a macroscopic phenomenon
generated by vacuum fluctuations of quantum electrodynamic (QED) fields is in good
agreement with experimental data [1–3]. It is natural to expect that the Casimir effect is
not a unique macro-manifestation of quantum fields’ fluctuations, and in many other problems
description of macro-system behaviour obtained by classical electrodynamics (ED) needs
essential quantum corrections. The calculation of them is a theoretical task being of practical
importance for development of nanotechnologies and design of microdevices [4].

A typical ED statement of a problem is to find electric and magnetic fields for the given
boundary conditions, charge and current distributions. In this paper, we consider the QED
version of the simplest problem of such a kind. We study gauge invariant, local, renormalizable
model of a simple defect on the plane. It is suggested for calculation of quantum corrections
for the fields of a plane in classical electrodynamics. It is essential that for renormalizability
of the model the direct interactions of the boundary both with the photon and with the Dirac
fields are necessary. We calculate the leading order approximations for mean strengths of
electric and magnetic fields expressed by usual relations in terms of the components of the
electromagnetic field tensor. Results look like classical ones at large distance from the plane.
For small distances r → 0, the strength of fields appears to be singular as C1/r2 +C2/r , where
C1, C2 are constants. It is essentially a non-classical effect generated by the interaction of the
Dirac fields with the defect on the plane.
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2. Statement of the problem

The full action of the model is a sum of QED bulk action and the most general surface action of
photon and fermion defects consistent with first principles of QED: gauge invariance, locality,
renormalizability: S(A,�) = SQED + S

(1)
� + S

(2)
� + S

(3)
� , where

S
(1)
� = a

2

∫
ελµνρ∂λ�(x)Aµ(x)Fνρ(x)δ(�(x)) dx,

S
(2)
� =

∫
�̄(x)Q̂�(x)δ(�(x)) dx, Q̂ = Q[µ]	[µ],

S
(3)
� =

∫ (
lA(x) + l′∂2

nA(x) + l̃∂nA(x)
)
δ(�(x)) dx, (nl) = (nl′) = (nl̃) = 0,

�(x) = 0 is the equation of the surface and 	[µ] is a full set of 16 Dirac matrices:
	[µ] = (I, γ5, γµ, γµγ5, σµν), ∂n is the derivative normal to the surface and n is the normal
unit vector. The photon defect S

(1)
� was studied in [5]. The fermion defect S

(2)
� was partially

considered in [6]. The S
(3)
� action describes the field of external charges and currents. The

effect due to photon defect exhibits itself in a long-range macroscopical fluctuation relevant
on microscale. The effects of fermion defect are exponentially suppressed on distances larger
than the electron Compton wavelength.

In this paper, we restrict ourselves only to the fermion defect concentrated on an infinite
plane x3 = 0 invariant with respect to coordinate reflections. Thus, we exclude from
consideration all parity violating terms of the action (containing γ5, l̃). The tensor σµν in
fermion defect describes magnet moments density of the surface. We assume it to be zero
which can be done without losing renormalizability. Then the model is specified by the
following action functional:

S(ψ̄, ψ,A) = SQED(ψ̄, ψ,A) + Sdef(ψ̄, ψ,A; λ, q, ξ), (1)

where SQED(ψ̄, ψ,A) is the usual QED action

SQED(ψ̄, ψ,A) =
∫

ψ̄(x)(i∂̂ − eÂ(x) − m)ψ(x) dx − 1

4

∫
Fµν(x)Fµν(x) dx

and Sdef(ψ̄, ψ,A; λ, q, l) = Sλq(ψ̄, ψ) + Sl(A) with

Sλq(ψ̄, ψ) ≡
∫

ψ̄(�x, 0)(λ + q̂)ψ(�x, 0) d�x Sl(A) ≡
∫

lA(�x, 0) d�x +
∫

l′∂2
3 A(�x, 0) d�x.

Here ψ̄, ψ are the Dirac spinor fields, A is the electromagnetic vector potential, q, l, l′ are
fixed 4-vectors, q̂ = qµγ µ (γ µ are the Dirac gamma-matrices), and we used the short-hand
notation for the 4-vector x : x = (x0, x1, x2, x3) = (�x, x3). The notation of this kind will also
be used later. For gauge invariance of the defect action, it is necessary to set l3 = l′3 = 0.3

The model remains renormalizable for l′ = 0 too, because as we will see below, there are no
divergences which need for their cancellation the l′-term in Sl .

The physical meaning of the vector l = (�l, 0) is very simple. It defines the classical
4-current on the defect plane. By neglecting in our model interaction of the photon and
Dirac fields, the mean electromagnetic field coincides with the solution of Maxwell equations
with the current (supported on the plane) defined by Sl . Vector q and scalar λ describe the
interaction of the current and density of the Dirac field with material defect. Namely, the zero
component of vector �q defines a surface charge density and spacelike components of vector �q
3 We consider the gauge transformations Aµ → Aµ +∂µφ not changing the asymptotic of the field Aµ(x) for large x.
It follows from this assumption that limxi→±∞ φ(x) = φ0, where φ0 is a constant being the same for all i = 0, 1, 2, 3.
Therefore Sl(A) is gauge invariant.
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parallel to the defect plane describe the surface current. The scalar λ defect can be interpreted
as a surface mass term. The interaction of vacuum fluctuations of the Dirac field with the
background generates quantum corrections to usual classical effects.

We calculate the leading approximation for the electromagnetic field generated by the
defect. Only the l-term in Sl appears to be necessary for cancellation of ultraviolet divergences
in our results. We set l′ = 0 and do not consider a trivial contribution to the first-order effects
from the l′-term in Sl . We choose the vector �l proportional to �q,�l = �qξ , and show that this
‘minimal’ form of Sl with only one extra to Sλq parameter ξ provides the cancellation of
divergences by renormalization of ξ .

In this paper we study the mean tensor Fµν of the electromagnetic field:

Fµν = C

∫
Fµν eiS(ψ̄,ψ,A)DADψ̄Dψ, C−1 =

∫
eiS(ψ̄,ψ,A)DADψ̄Dψ. (2)

The tensor Fµν is gauge invariant; therefore, Fµν is independent of the choice of the
gauge. We provide calculations in Feynman’s gauge using the formula

Dµν(x, y) = δµν

4π2(x − y)2

for the photon propagator in configuration space. Integrating by parts in the functional integral
(2) we obtain

Fµν(x) = 1

2π2

∫
d4y

(xν − yν)Jµ(y) − (xµ − yµ)Jν(y)

(x − y)4
, (3)

where

Jµ(y) = ejµ(y) − lµδ(y3), jµ(y) = C

∫
eiS(ψ̄,ψ,�q)ψ̄(y)γµψ(y)Dψ̄Dψ. (4)

In virtue of invariance of the action (1) with respect to translation of coordinates x0, x1, x2

and reflection of x3, jµ(y) is an even function of coordinate y3 only: J (y) = J (y3) = J (−y3),
and after integration over �y in (3) we obtain the following result:

Fµν(x) = 1

2

∫ x3

−x3

[δν3Jµ(y3) − δµ3Jν(y3)] dy3

= Sign(x3)

{
e

∫ |x3|

0
[δν3jµ(y3) − δµ3jν(y3)] dy3 − ξ(δν3qµ − δµ3qν)

}
, (5)

where Sign(x3) is the signum function: Sign(x3) = x3/|x3|.
The vector jµ in (4) is the current generated by vacuum fluctuations of Dirac fields.

In virtue of Farri’s theorem, it vanishes in the absence of defect. By usual methods
of renormalization theory and its modification for the quantum field theory with singular
background [7], one can prove that in the framework of renormalized perturbation theory
jµ(y3) is presented by a sum of diagrams with all necessary subtractions. Therefore, it is
finite (for the leading approximation it will be clear from the evident formula below), and in
calculation of (5) there is only problem with non-integrable singularity of jµ(y3) at y3 = 0.
Therefore, the integral (5) needs a regularization. Since for x3 �= 0, the derivative of Fµν(x3)

with respect to x3 is finite, we obtain the finite value of Fµν(x3) subtracting from the integral
on the left-hand side of (5) a constant dependent on the chosen regularization. This subtraction
can be generated by the term Sl with the appropriate choice of the parameter ξ . Therefore, the
l′-term in Sl is not necessary for renormalizability of the considered model.
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3. Calculations and renormalization of Fµν

The regularized form of the leading approximation of Fµν with the cut-off parameter � was
obtained in [6]:

Fµν(x) = e(qµδν3 − qνδ3µ)Sign(x3)

[
F(x3,�) − ξ

2

]
,

where

F(x3,�) ≡ 1

4π2|�q|α2

∫ �

0
dp

(1 − e−2E|x3|)p
E

[
2pα − (E(1 − α2) + mβ) ln

E + αp + βm

E − αp + βm

]
,

α = 4|�q|
4 − q2 + λ2

, β = 4λ

4 − q2 + λ2
, |�q| ≡

√
q2

1 + q2
2 − q2

0 ,

q2 ≡ q2
0 − q2

1 − q2
2 − q2

3 .

The asymptotics of F(ρ,�) for large � can be written as

F(ρ,�) = c2
�2

m2
+ c1

�

m
+ c0 + f (ρ) + O

(
m2

�2

)
,

where

f (ρ) ≡ − 1

4π2|�q|α2

∫ ∞

0
dp

e−2E|ρ|p
E

[
2pα − (E(1 − α2) + mβ) ln

E + αp + βm

E − αp + βm

]
,

c2 = m2

8π2|�q|α2

{
2α + (α2 − 1) ln

1 + α

1 − α

}
, c1 = βm2

4π2|�q|α2

{
2α − ln

1 + α

1 − α

}

and c0 is an independent from � constant. The requirement that Fµν is finite for � → ∞
means that ξ depends on �, and for large � its asymptotic has the form

ξ(�) = 2

(
c2

�2

m2
+ c1

�

m

)
+ χ + O

(
m2

�2

)
.

Here, the parameter χ is the renormalized value of ξ .
Thus, if we denote �F = (F03,F13,F23), then for � → ∞ we obtain the following result:

�F(x) = eSign(x3)�q
(
c0 + f (x3) − χ

2

)
.

The asymptotics of the function f (ρ) are of the form

f (ρ) =
ρ→∞ − αm2 e−2m|ρ|

8|�q|(πm|ρ|)3/2(1 + β)
(1 + O(1/ρ)),

f (ρ) =
ρ→0

− c2

2m2ρ2
− c1

2m|ρ| − c0 + c2 + O(ρ).

Hence,

�F(x) =
x3→∞ eSign(x3)�q

(
c0 − χ

2
− αm2 e−2m|x3|

8|�q|(πm|x3|)3/2(1 + β)
(1 + O(1/x3))

)
,

�F(x) =
x3→0

−eSign(x3)�q
(

c2

2m2x2
3

+
c1

2m|x3| +
χ

2
− c2 + O(x3)

)
.

We see that at large distances from the plane, the field generated by the defect is of the
same form as the field of the plane in classical ED, and at small distances x3, it has non-classical
behaviour �F ∼ e�qc2

/
2m2x2

3 .
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Our model is invariant under translations and Lorenz transformations of �x, �q. Then we can
classify the defect properties with the value of the invariant |�q|. Let us consider three cases: (1)
q = (κ, 0, 0, τ ) ≡ q(1); (2) q = (0, κ, 0, τ ) ≡ q(2); (3) q = (κ, κ, 0, τ ) ≡ q(3). If q = q(1),
the defect generates pure electric field: H1 = H2 = H3 = 0, E1 = E2 = 0, E3 = −F03. For
q = q(2), the field is pure magnetic one: E1 = E2 = E3 = 0,H1 = H3 = 0,H2 = −F13. For
q = q(3), there are both magnetic and electric fields: E1 = E2 = H1 = H3 = 0, E3 = H2 =
−F13. We see that interaction of QED fields with the defect is described by four parameters:
κ, τ ≡ q3, λ and χ .

4. Fields generated by simplest defects

The obtained results demonstrate the non-trivial dependence of the fields E and H on the
parameters κ, λ, τ . In the main approximation, E and H are linear functions of χ and E =
H = 0, if χ = 0, κ = 0. Let us consider the simplest non-trivial case κ �= 0, χ = λ =
τ = 0. The asymptotics of E and H for large and small x3 are as follows. If q = q(1), the
defect generates the pure electric field E3,

E3 ≈
x3→0

em2

8π2ω2
[(1 + ω2)arctg(ω) − ω]

(
1

m2x2
3

− 2

)
.

E3 ≈
x3→∞

− em2

4π2ω2
[arctg(ω) − ω], ω = 4κ

4 − κ2
.

(6)

For q = q(2) the field is pure magnetic,

H2 ≈
x3→0

em2

16π2ω′2

[
(1 + ω

′2)ln
1 + ω′

1 − ω′ − 2ω′
] (

1

m2x2
3

− 2

)
.

H2 ≈
x3→∞

− em2

8π2ω2′

[
ln

1 + ω′

1 − ω′ − 2ω′
]

, ω′ = 4κ

4 + κ2
.

(7)

For q = q(3), E1 = E2 = H1 = H3 = 0 and the asymptotics of the fields E3,H2 are of the
form

E3 ≈
x3→0

H2 ≈
x3→0

eκm2

12π2

(
1

m2x2
3

− 2

)
,

E3 ≈
x3→∞

H2 ≈
x3→∞

eκm2

12π2
.

(8)

The important feature of the fields generated by the considered defects for q = q(1), q(2) is
that they are singular at κ = ±2. This means that these values of the parameter κ are the phase
transition points, where in the case of q = q(1), the electrical field E3 is changed suddenly and
in the case of q = q(2), the field H2 becomes infinite. This phenomenon seems to be not very
surprising since it is similar to the known supercritical effects induced by perturbation of the
Dirac field by the attractive δ potential which causes submerging of the ground state into the
Dirac sea by the finite value of the coupling parameter [8–10].

The points κ = ±2 are stable with respect to the transformation κ → κ ′ = 4/κ , for
which ω(κ) → ω(κ ′) = −ω(κ), E3(κ) → E3(κ

′) = −E3(κ) and ω′(κ) → ω′(κ ′) =
ω′(κ),H2(κ) → H2(κ

′) = H2(κ). For q = q(1) in each point of space the magnitude of field
E3, considered as a function of κ , is restricted: |E(κ)| � |E(2)| < ∞ for all values of κ .

For λ = χ = τ = 0 the short-distance asymptotic is of the form E,H ∼
const[1/(m2x2) − 2]. In this case, the relative correction of the next to leading term appears
to be independent of the parameter κ describing specific properties of the defect on the plane.
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Comparing the large distance asymptotics of (6) with the electric field of the charged plane
in classical electrodynamics Ecl = σ/(2ε0), we can identify the zeroth term of asymptotical
expansion of E3 with the classical field. Then κ is defined by the charge density per unit area
σ as follows:

σ = − em2ε0

2π2ω2
[arctg(ω) − ω], ω = 4κ

4 − κ2
.

This is nonlinear equation on κ and it can be solved by standard numerical methods. We
want to stress several features of this combination of the parameters. Firstly, the theory has
four phases, i.e. for any given σ < σcritical, there are four different κ . Secondly, the fermion
defect itself induces only finite surface charge density σ < σcritical and photon defect is needed
(ζ �= 0) to induce arbitrary surface charge density σ .

According to the Biot and Savart law in classical ED the constant magnetic field is induced
by an infinite plane with the constant current J. Identifying the constant term of H2 in (7) with
the classical magnetic field, one can define κ via the current J = (0, 1, 0, 0)J . In this case,
the model has two phases and arbitrary values of J can be generated.

5. Conclusions

The suggested model describes an infinite plane with homogeneous charge and current
distributions in the framework of QED. Specific properties of the physical system are
characterized by an additional term Sdef (action of defect) combined with the usual action
of QED into the full action of the model. Sdef was chosen on the basis of general principles
of QED: locality, gauge invariance and renormalizability of the theory. The calculation of the
leading order effects shows that the mean field induced by Sdef has classical behaviour at a
large distance from the plane. The corresponding asymptotic can be used as normalization
conditions pinpointing interplay of parameters describing the fields of a plane in classical ED
with those of the considered model. In this way, one can express four parameters of Sdef in
terms of the effective charge and current densities and constants characterizing macroscopic
properties of the material of the plane.

At short distances the fields E,H are singular as functions of distance x from the
defect: E,H ∼ const/x2. Estimating the energy density with the usual classical formula
W = (E2 + H 2)/2, one obtains its behaviour for (6), (7) and (8) at short distances as
W(x) ∼ c/x4 + c′/x2, where c, c′ are finite cut-off independent constants. These singularities
representing physical peculiarities of the model could be predicted with dimensional analysis.
It is similar to the one found for the scalar field under Dirichlet or Neumann boundary
conditions on a single plate [11], akin local effects near surfaces can be observed in different
geometries (see, for example, [12–14]). Our model predicts the dependence of c and c′ on
parameters of the material plane.

In our paper, we have restricted ourselves to the simple problem to calculate the mean
electromagnetic field generated by perturbation of QED vacuum by an infinite plane film. It is
important to note that a finite physical observable is extracted for a system of just one isolated
plane in distinction to ordinary Casimir effect.

We hope that the proposed approach can provide a deeper insight into the nature
of quantum phenomena of interaction of macroscopic bodies with QED fields. The
direct experimental proof of the obtained results seems to be not easy because they
concern the effects which are exponentially suppressed with the distance from the boundary
(with the Compton wavelength of electron ∼10−10 cm as a characteristic scale). However,
the electromagnetic fields formed by fermionic defect can play an essential role in many



Renormalizable mean field calculation in QED with fermion background 6363

phenomena near boundary (output electron energy, spectrum of atoms, emission and scattering
of electrons on the material boundary, etc). Therefore, we believe that there is a possibility of
checking our results experimentally. We also expect that the suggested model will be useful
for theoretical investigation in physics of two-dimensional materials.
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